Вконтакте Facebook Twitter Лента RSS

Схема проверки обратного тока коллектора мощных транзисторов. Прибор для проверки транзисторов (бетник)

При сборке простых конструкций необходимо удостовериться в работоспособности устанавливаемых в них транзисторов. При этом зачастую совершенно недостаточно просто убедиться в их целостности, прозвонив их переходы. Гораздо надежнее и результативнее будет испытать их, например, в режиме генерации.

Испытатель транзисторов

Ниже приводится очень простая схема испытателя транзисторов для начинающих радиолюбителей.

Испытатель транзисторов

(Вторая профессия бытового дозиметра)

В статье рассказывается как доделать бытовой дозиметр и превратить его в испытатель транзисторов, позволяющий измерять некоторые их параметры.

Светоиндикаторный пробник для проверки транзисторов

Очень хорошая схема испытателя транзисторов, позволяющая определить цоколевку неизвестного экземпляра, с отображением на знакосинтезирующем индикаторе.

Простые пробники, приставки, измерители (ретро)

Транзистор, как усилительный прибор, является основой основ для построения самых разнообразных электронных устройств. Соответственно возникает необходимость быть уверенным в его исправности, а так же оценить его качественные показатели, о чем и рассказывается ниже.

Чтобы проверить исправность и работоспособность собственно транзистора, оказывается можно использовать радиоточку. Причем по громкости используемого звукоизлучателя можно оценить коэффициент усиления конкретного экземпляра. Ну а схема генератора на основе проверяемого транзистора является стандартным методом его проверки. К тому же с помощью генераторной схемы проверки полупроводниковых приборов можно грубо определять коэффициент усиления триодов, чтобы подобрать лучшие экземпляры.

Для конкретного измерения статического коэффициента усиления транзистора потребуется изготовить испытатель и даже измеритель оного. Хотя на поверку схема его может быть не намного сложнее пробника. Единственное, что необходимо будет отградуировать шкалу измерительного прибора. А для этого, конечно, может потребоваться образцовый тестер. А можно использовать сам тестер в качестве индикатора))).

Бывают несложные приставки, с помощью которых можно измерить также такой параметр транзистора, как обратный ток коллектора.

Все эти конструкции применимы совместно с маломощными транзисторами. Для проверки и испытания среднемощных транзисторов и транзисторов большой мощности придется изготовить другие приставки. Конечно можно использовать эти же самые устройства, просто добавив дополнительные элементы коммутации. Но это-то и портит дело. Легче и удобнее смастерить измерители отдельно для мощных транзисторов.

Отдельно необходимо отметить, что статический коэффициент передачи тока (коэффициент усиления) и обратный ток коллектора — это основные показатели усилительных свойств транзистора. Но в практике начинающего радиолюбителя бывает достаточно просто убедиться в исправности и работоспособности конкретного экземпляра.

Пробник для проверки транзисторов

Достоинство предлагаемой схемы пробника в том, что он во многих случаях позволяет проверять исправность транзисторов, не выпаивая их из конструкции.

С помощью описываемого здесь прибора можно измерить обратный ток коллекторного перехода IКБ0 и статический коэффициент передачи тока h2)9 маломощных транзисторов структур р-п-р и п-р-п.

Конструктивно испытатель транзисторов выполнен в виде приставки к аво-метру, так же как транзисторные вольтметры постоянного и переменного токов. Для соединения с микроамперметром авометра приставка снабжена штепсельной колодкой, которую при измерениях вставляют в гнезда «100 мкА» на передней панели авометра. При этом переключатель вида измерений авометра должен находиться в положении «V».

Питается прибор стабилизированным напряжением 9 В от нерегулируемого источника блока питания.

Прежде чем перейти к описанию принципиальной схемы испытателя, несколько слов о положенном в его основу принципе. Подавляющее большинство описанных в радиолюбительской, литературе простых испытателей транзисторов рассчитано на измерение, статического коэффициента передачи тока hjis при фиксированном токе базы (обычно-100 мкА). Это облегчает измерения [шкалу прибора в цепи коллектора проверяемого транзистора можно отградуировать непосредственно в значениях hi20 = lHRB/UcB, где Ugb - напряжение батареи (см. рис. 20,6)], однако такие испытатели имеют существенный недостаток. Дело в том, что коэффициент передачи тока h2is в значительной мере зависит от режима работы транзистора и в первую очередь от тока эмиттера 1э. Вот почему в справочниках всегда приводятся не только значения коэффициента передачи тока h2iв, но и условия, в которых он измерен (ток Iв и напряжение между коллектором и эмиттером Ukb).

Статический коэффициент передачи тока h2is маломощных транзисторов обычно измеряют при токе Ь=0,5 мА (низкочастотные маломощные транзисторы) , 1 мА (остальные низкочастотные) или 10 мА (транзисторы, предназначенные для работы в импульсном режиме). Напряжение 1Лкэ при измерении этого параметра обычно близко к 5 В. Поскольку коэффициент h2ia мало зависит от Uks, у транзисторов малой мощности (кроме высокочастотных) его можно измерять при одном и том же значении Uks.

В испытателях, измеряющих статический коэффициент передачи тока при фиксированном токе базы, коллекторные (а следовательно, и эмиттерные) токи проверяемых транзисторов даже одного типа практически всегда разные. А это значит, что сопоставить результаты измерений со справочными данными (при определенном токе эмиттера) просто невозможно.

Приборы, в которых возможна установка любого заданного тока коллектора (или эмиттера), позволяют получить сопоставимые значения параметра h2iв, однако такие испытатели неудобны в работе, так как требуют при каждом измерении устанавливать ток коллектора заново.

Этих недостатков нет у испытателя транзисторов, входящего в лабораторию. Он рассчитан на измерение статического коэффициента передачи тока h2is при нескольких фиксированных значениях стабилизированного тока эмиттера. Это позволяет оценить усилительные свойства транзистора в режиме, близком к рабочему, т. е. при токе, текущем через транзистор в устройстве, для которого он предназначен.

Упрощенная схема измерителя статического коэффициента передачи тока h2)g при стабилизированном (фиксированном) токе эмиттера изображена на рис. 44. Проверяемый транзистор VT вместе с элементами испытателя образует стабилизатор тока. Напряжение на базе транзистора стабилизировано стабилитроном VD, поэтому в его эмиттерной (коллекторной) цепи течет ток, практически не зависящий от изменения напряжения источника питания GB. Этот ток можно рассчитать по формуле 1b=(\Jvd-Use)/R2, где 1э - эмиттерный ток (в амперах), Uvd - напряжение на стабилитроне (в вольтах), Use - падение напряжения на эмиттерном переходе транзистора (также в вольтах), R2 - сопротивление (в омах) резистора в эмиттерной цепи транзистора. Для получения разных токов через транзистор, в его эмиттерную цепь достаточно ввести переключатель с набором постоянных резисторов, сопротивления которых рассчитаны по приведенной формуле. Поскольку при фиксированном значении тока эмиттера ток базы обратно пропорционален статическому коэффициенту передачи тока h2is (чем он больше, тем меньше ток базы, и наоборот), шкалу прибора РА в цепи базы проверяемого транзистора можно отградуировать в значениях h2i8.

Радиолюбителю приходится иметь дело как с германиевыми, так и с кремниевыми транзисторами. У первых напряжение Uaii=0,2...0,3 В, у вторых Шб=0,6...0,7 В. Чтобы не усложнять прибор, при расчете сопротивлений резисторов, задающих эмиттерные токи, можно взять среднее значение падения напряжения на эмиттерном переходе, равное 0,4 В. В этом случае отклонение тока эмиттера при испытании любых маломощных транзисторов (и выбранном напряжении на стабилитроне Uvd = 4,7 В) не превышает ±10% от номинального, что вполне допустимо.

Принципиальная схема испытателя транзисторов изображена на рис. 45. Он предназначен для измерения обратного тока коллектора Iki;o до 100 мкА и статического коэффициента передачи тока h2ia от 10 до 100 при токе эмиттера la = 1 мА и от 20 до 200 при токах эмиттера, равных 2; 5 и 10 мА. Ориентировочно можно измерить и большие значения параметра h2iв. Если, например, считать минимальный измеряемый ток базы равным 2 мкА, что соответствует одному делению шкалы микроамперметра М24, то при эмиттерном токе 1 мА можно регистрировать значения коэффициента h2is до 500, при токах 2, 5 и 10 мА - до 1000. Следует учесть, что погрешность измерений таких значений h2ia может достигать десятков процентов.

Проверяемый транзистор VT подключают к гнездам розетки XS1. Эмиттер-ный ток, при котором необходимо измерить коэффициент h2is, выбирают переключателем SA3, включающим (секцией SA3.2) в эмиттерную цепь транзистора

один из резисторов R5 - R8. Для получения указанных пределов измерений коэффициента h2ia (20...200) при токах эмиттера, равных б и 10 мА, в третьем и четвертом положениях переключателя SA3 параллельно микроамперметру РА1 авометра подключаются соответственно резисторы R3 и R2, в результате чего ток полного отклонения его стрелки возрастает в первом случае до 250, а во втором - до 500 мкА.

Из режима измерения коэффициента Ьцэ в режим контроля обратного тока коллектора 1кбо испытатель переводят переключателем SA2. Первый из этих параметров измеряют при напряжении на коллекторе (относительно эмиттера) около 4,7 В, второй - при таком же напряжении, снимаемом со стабилитрона VD1.

Переключателем SA1 изменяют полярность включения источника питания, микроамперметра РА1 и стабилитрона VD1 при испытании транзисторов разной структуры (p-n-р или п-р-п). Резистор R4, вводимый в цепь коллекторного перехода при измерении 1кво, ограничивает ток через микроамперметр в случае, если переход оказывается пробитым. Ток 1кво и коэффициент h2is измеряют при нажатой кнопке SB1.

Конструкция и детали. Внешний вид испытателя транзисторов вместе с аво-метром показан на рис. 46, разметка его лицевой панели - на рис. 47, разметка монтажной платы и схема соединений деталей приставки - на рис. 48.

Как и в транзисторных вольтметрах, несущим элементом конструкции является корпус приставки, изготовленный из листового алюминиевого сплава АМц-П толщиной 1 мм. На лицевой панели (верхней стенке) закреплены кнопка SB1, плата с зажимами для подключения выводов транзисторов и четыре латунные стойки диаметром 4 и длиной 19 мм с резьбовыми отверстиями М2 (глубиной 6 мм) для винтов крепления монтажной платы, на боковой стенке - штепсельная колодка для соединения приставки с микроамперметром авометра.

П-образная крышка (материал тот же, что и корпуса) с пластмассовой пластиной толщиной 3...4 мм прикреплена к корпусу винтами М2х8 с потайными головками. Винты ввинчены в гайки М2, приклеенные к полочкам корпуса с внутренней стороны.

Переключатели SA1 - SA3 - движковые от транзисторного радиоприемника «Сокол». Два из них (SA1 и SA2) использованы без переделки, третий (SA3) переделан в двухполюсный на четыре положения. Для этого удалены крайние неподвижные контакты (по одному в каждом ряду), а подвижные переставлены таким образом, чтобы обеспечивалась схема коммутации, изображенная на рис. 49.

Выводы контактов переключателей вставлены в отверстия 0 2,6 мм платы с обратной стороны (по рис. 48, а) и удерживаются на ней припаянными к ним соединительными проводами (МГШВ сечением 0,14 мм2) и выводами резисторов R1-R8 (MJIT) и стабилитрона VD1. Резисторы R5 - R8 изображены за контуром платы условно, на самом деле они расположены между выводами переключателей SA3 и SA2.

Конструкция гнездовой колодки XS1 для подсоединения выводов транзисторов к испытателю показана на рис. 50. Ее корпус состоит из деталей 1 и 3, изготовленных из листового органического стекла и склеенных дихлорэтаном. Контакты 2 изготовлены из листовой бронзы (можно использовать твердую латунь) толщиной 0,3 мм. Чтобы к испытателю можно было подключать транзисторы различной конструкции и с разным расположением выводов, число контактов выбрано равным пяти, а расстояние между ними - 2,5 мм. К корпусу приставки колодка прикреплена двумя винтами М2Хб с потайными головками. Такими же винтами на боковой стенке корпуса закреплена штепсельная колодка, служащая для соединения приставки с микроамперметром авометра.

Устройство самодельной кнопки SB1 показано на рис. 51. Ее корпус состоит из деталей 2 и 5, выпиленных из органического стекла и склеенных дихлорэтаном. Контакты 1 и 3 закреплены на детали 2 заклепками 6. Сама кнопка 4 соединена с подвижным контактом 3 винтом МЗХ5. Для крепления кнопки к корпусу приставки в торцах деталей 2 и 5 предусмотрены резьбовые отверстия под винты М2. Контакты 1 и 3 изготовлены из того же материала, что и пружинящие контакты гнездовой колодки для подключения транзисторов, кнопка 4 - из полистирола (можно использовать органическое стекло, текстолит и т. д.).

Как и в ранее описанных приборах-приставках, для соединения с блоком питания лаборатории использован двухпроводный шнур, оканчивающийся штепселями диаметром 3 мм.

Все надписи выполнены на листе плотной бумаги и защищены от повреждений прозрачной накладкой из органического стекла толщиной 2 мм. Для крепления к корпусу использованы один из винтов крепления колодки для подключения транзисторов и три винта М2х5, ввинченные в резьбовые отверстия накладки.

Налаживание правильно смонтированного испытателя транзисторов сводится в основном к подбору резисторов R3 и R2. Первый подбирают таким образом, чтобы при подключении его к микроамперметру авометра верхний предел измерений повышался до 250 мкА, а второй - таким образом, чтобы он увеличивался до 500 мкА. Практически это удобно делать, собрав электрическую цепь (рис. 52) из микроамперметра авометра РА1, образцового микроамперметра РА2 с пределом измерения 300...500 мкА, батареи GB напряжением 4,5 В (3336Л или три любых гальванических элемента, соединенных последовательно), резистора-шунта R1, токоограничительного резистора R2 и выключателя SA. Установив движки резисторов R1 и R2 в крайнее левое (по схеме) положение (т. е. в положение, соответствующее их максимальному сопротивлению), замыкают электрическую цепь выключателем SA. Затем, попеременно уменьшая сопротивление обоих резисторов, добиваются того, чтобы при токе 250 мкА, отсчитанном по образцовому микроамперметру РА2, стрелка микроамперметра авометра PAl установилась точно на последнюю отметку шкалы. После этого цепь разрывают и отключают приставку от авометра. Переключив последний в режим омметра, измеряют сопротивление введенной части переменного резистора R1 и подбирают постоянный резистор (R3) точно такого же сопротивления (при необходимости его можно составить из двух параллельно или последовательно соединенных резисторов).

Аналогично, но по току в измерительной цепи, равному 500 мкА, подбирают резистор R2. Подобранные резисторы R3 и R2 устанавливают на плату.

Шкалу для измерения статического коэффициента передачи тока h2i9 (или таблицу, если нет желания или возможности разбирать микроамперметр аво-метра) рассчитывают по формуле h2ia = Iэ/1б (здесь 1э - ток эмиттера, соответствующий выбранному режиму измерений; 1б - выраженный в этих же единицах ток базы, отсчитанный по шкале микроамперметра, оба тока в милли- или микроамперах). Значения коэффициента h2i3, соответствующие разным токам базы и эмиттера, приведены в табл. 1.

Проверку транзистора начинают с измерения тока коллекторного перехода 1ябо. Для этого переключатель SA1 устанавливают в положение, соответствующее структуре испытываемого транзистора, SA2 - в положение «1кво» и нажимают на кнопку SB1 («Изм.»). Убедившись в исправнвсти перехода (у германиевых маломощных транзисторов ток 1кбо может достигать нескольких микроампер, у кремниевых он ничтожно мал), переключатель SA2 переводят в положение «h2is», переключателем SA3 устанавливают ток эмиттера, при котором необходимо определить коэффициент h21e, и, нажав на кнопку SB1, отсчитывают значение h2is по шкале микроамперметра (или переводят измеренный ток базы в значение коэффициента, пользуясь таблицей).

Если в авометре использован микроамперметр с параметрами, отличающимися от приведенных в описании авометра, сопротивление резисторов R2 и R3 придется рассчитать и подобрать применительно к имеющемуся прибору.

Принципиальная схема достаточно простого испытателя маломощных транзисторов приведена на рис. 9. Он представляет собой генератор звуковой частоты, который при исправном транзисторе VT возбуждается, и излучатель НА1 воспроизводит звук.

Рис. 9. Схема простого испытателя транзисторов

Питание устройства осуществляется от батареи GB1 типа 3336Л напряжением от 3,7 до 4,1 В. В качестве звукоизлучателя используется высокоомный телефонный капсюль. При необходимости проверки транзистора структуры n-p-n достаточно поменять полярность включения батареи питания. Эту схему можно также использовать в качестве звукового сигнализатора, управляемого вручную кнопкой SA1 или контактами какого-либо устройства.

2.2. Прибор для проверки исправности транзисторов

Кирсанов В.

С помощью этого несложного прибора можно проверять транзисторы, не выпаивая их из того устройства, в котором они установлены. Необходимо лишь отключить там питание.

Принципиальная схема прибора приведена на рис. 10.

Рис. 10. Схема прибора для проверки исправности транзисторов

Если выводы испытуемого транзистора V x подключить к прибору, он совместно с транзистором VT1 образует схему симметричного мультивибратора с емкостной связью, и если транзистор исправен, мультивибратор будет генерировать колебания звуковой частоты, которые после усиления транзистором VT2 воспроизведутся звукоизлучателем В1. С помощью переключателя S1 можно изменить полярность напряжения, поступающего на проверяемый транзистор согласно его структуре.

Вместо старых германиевых транзисторов МП 16 можно использовать современные кремниевые КТ361 с любым буквенным индексом.

2.3. Испытатель транзисторов средней и большой мощности

Васильев В.

С помощью этого прибора есть возможность измерить обратный ток коллектор-эмиттер транзистора I КЭ и статический коэффициент передачи тока в схеме с общим эмиттером h 21Э при разных значениях тока базы. Прибор позволяет измерять параметры транзисторов обеих структур. На принципиальной схеме прибора (рис. 11) показаны три группы входных клемм. Группы Х2 и ХЗ предназначены для подключения транзисторов средней мощности с разным расположением выводов. Группа XI - для транзисторов большой мощности.

Кнопками S1-S3 устанавливается ток базы испытуемого транзистора: 1,3 или 10 мА Переключателем S4 можно изменить полярность подключения батареи питания в зависимости от структуры транзистора. Стрелочный прибор РА1 магнитоэлектрической системы с током полного отклонения 300 мА измеряет ток коллектора. Для питания прибора используется батарея GB1 типа 3336Л.

Рис. 11. Схема испытателя транзисторов средней и большой мощности

Перед подключением испытуемого транзистора к одной из групп входных клемм нужно установить переключатель S4 в положение, соответствующее структуре транзистора. После его подключения прибор покажет значение обратного тока коллектор-эмиттер. Затем одной из кнопок S1-S3 включают ток базы и измеряют ток коллектора транзистора. Статический коэффициент передачи тока h 21Э определяется делением измеренного тока коллектора на установленный ток базы. При оборванном переходе ток коллектора равен нулю, а при пробитом транзисторе загораются индикаторные лампы H1, Н2 типа МН2,5–0,15.

2.4. Испытатель транзисторов со стрелочным индикатором

Вардашкин А .

При использовании этого прибора можно измерить обратный ток коллектора I КБО и статический коэффициент передачи тока в схеме с общим эмиттером h 21Э маломощных и мощных биполярных транзисторов обеих структур. Принципиальная схема прибора показана на рис. 12.

Рис. 12. Схема испытателя транзисторов со стрелочным индикатором

Испытуемый транзистор подключается к клеммам прибора в зависимости от расположения выводов. Переключателем П2 устанавливается режим измерения для маломощных или мощных транзисторов. Переключатель ПЗ изменяет полярность батареи питания в зависимости от структуры контролируемого транзистора. Переключатель П1 на три положения и 4 направления служит для выбора режима. В положении 1 измеряется обратный ток коллектора I КБО при разомкнутой цепи эмиттера. Положение 2 служит для установки и измерения тока базы I б. В положении 3 измеряется статический ко- эффициент передачи тока в схеме с общим эмиттером h 21Э.

При измерении обратного тока коллектора мощных транзисторов параллельно измерительному прибору РА1 переключателем П2 подключается шунт R3. Установка тока базы производится переменным резистором R4 под контролем стрелочного прибора, который при мощном транзисторе также шунтируется резистором R3. Для измерений статического коэффициента передачи тока при маломощных транзисторах микроамперметр шунтируется резистором R1, а при мощных - резистором R2.

Схема испытателя рассчитана на применение в качестве стрелочного прибора микроамперметра типа М592 (или любого другого) с током полного отклонения 100 мкА, нулем посредине шкалы (100-0-100) и сопротивлением рамки 660 Ом. Тогда подключение к прибору шунта сопротивлением 70 Ом дает предел измерения 1 мА, сопротивлением 12 Ом - 5 мА, а 1 Ом - 100 мА. Если использовать стрелочный прибор с другим значением сопротивления рамки, придется пересчитать сопротивления шунтов.

2.5. Испытатель мощных транзисторов

Белоусов А.

Этот прибор позволяет измерять обратный ток коллектор-эмиттер I КЭ, обратный ток коллектора I КБО, а также статический коэффициент передачи тока в схеме с общим эмиттером h 21Э мощных биполярных транзисторов обеих структур. Принципиальная схема испытателя показана на рис. 13.

Рис. 13. Принципиальная схема испытателя мощных транзисторов

Выводы испытуемого транзистора подключаются к клеммам ХТ1, ХТ2, ХТЗ, обозначенных буквами «э», «к» и «б». Переключатель SB2 используется для переключения полярности питания в зависимости от структуры транзистора. Переключателями SB1 и SB3 пользуются в процессе измерений. Кнопки SB4-SB8 предназначены для изменения пределов измерения путем изменения тока базы.

Для измерения обратного тока коллектор-эмиттер нажимают кнопки SB1 и SB3. При этом отключается база контактами SB 1.2 и отключается шунт R1 контактами SB 1.1. Тогда предел измерения тока составляет 10 мА. Для измерения обратного тока коллектора отсоединяют вывод эмиттера от клеммы ХТ1, подключают к ней вывод базы транзистора и нажимают кнопки SB1 и SB3. Полное отклонение стрелки вновь соответствует току 10 мА.

В этом небольшом обзоре рассмотрим возможность самостоятельного изготовления такого интересного и полезного в обиходе домашнем прибора, как простой тестер. Такой простой приборчик очень пригодится для оперативной проверки работоспособности радиодеталей и применения в быту.

Несмотря на то, что в магазинах можно купить тестер по достаточно низкой цене, самостоятельная сборка такого небольшого прибора станет отличной практикой для любого начинающего любителя радиотехники.

Собранный прибор очень удобен и вполне может использоваться даже мастерами своего дела. Фото самодельного тестера вы можете увидеть в обзоре ниже.


Принципиальная схема простого тестера

Такой прибор включает в себя минимальное количество элементов для сборки, которые есть в обиходе практически в любом доме или легко при необходимости могут быть куплены в любом магазине радиодеталей или даже в хозяйственном магазине.

По своей сути это единственный мультивибратор, который собран на транзисторной основе. С его помощью происходит генерация импульсов прямоугольного типа.


Контрольная цепь тока подключается к элементам мультивибратора на последовательной основе встречно и параллельно с использованием двух цветных светодиодов.

В итоге цепь, которая подлежит проверке с помощью устройства, тестируется током переменного типа, что обеспечивает высокую точность проверки.

Принципы работы тестера

С основного рабочего компонента, которым является мультивибратор, снимают переменный ток, который по своей амплитуде примерно равен тому, который подаётся источником питания. В качестве конденсирующего элемента подойдёт любой, выше 3.7 В, например на 16 или 25 В.


Естественно, что с разомкнутой цепью светодиоды не загораются. При замыкании цепи и прохождении тока по цепи загораются светодиоды. Всё просто.

Таким приборчиком можно очень быстро и качественно проверить любой элемент на работоспособность или цепь на разрыв в ней. Очень удобно для использования в домашних условиях, особенно не особо хорошо подготовленным человеком. Тестер транзисторов своими руками — что может быть проще?


Собирается такое устройство либо с применением простой печатной платы или же способом навесного монтирования. Также в область применения входит возможность определения «плюса» и «минуса», когда вам не известно, где они у исследуемого элемента. Для использования в качестве батареи можно использовать 2-3 батарейки AAA для минимизации размера устройства.

Второй способ изготовления компактного тестера для использования в автомобиле. У такого прибора будет буквально 2 главные рабочие функции — возможность показания напряжения «на массе» и наличие в цепи 12 В. Причём, всё это будет доступно буквально при присоединении одного проводка к сети машины.


Что понадобится для создания такого функционального приспособления:

  • обычный медицинский шприц на 5 см3;
  • батареи LR-44 в количестве 4 штук;
  • два маленьких светодиодных элемента с резисторным компонентом;
  • маленький кусочек стальной проволочки;
  • проводок с зажимом на его конечной части.

Схемы самодельных тестеров автомобильного типа

  • Встречным способом параллельно спаиваем оба используемых светодиода;
  • Через применяемый резистор один из концов необходимо припаять крепко к стальной проволоке;
  • Прямо внутрь корпуса шприца устанавливаете одну за другой батарейки. Выбраны именно такие, поскольку они прекрасно помещаются в пятикубовый шприц;
  • Щуп пластиковой трубкой изолируется от шприца, проверяете работоспособность непосредственно в машине на практике;
  • Проверяем, засветятся ли светодиоды на элементе в 12В.

Итак, применение самими вами сделанного тестера более, чем обусловлено в быту. Поверьте, что такой небольшой прибор обязательно пригодится если не в ежедневном быту, то в те моменты, когда нужно что-то проверить в электросети домашней или в автомобиле.

Изготовление тестера своими руками способно серьёзно поднять самооценку любого человека, который не верит в то, что своими руками способен сделать что угодно — важно лишь желание.

Фото тестеров своими руками

Это очередная статья, посвященная начинающему радиолюбителю. Проверка работоспособности транзисторов пожалуй самое важно дело, поскольку именно нерабочий транзистор является причиной отказа работы всей схемы. Чаще всего у начинающих любителей электроники возникают проблемы с проверкой полевых транзисторов, а если под рукой нет даже мультиметра, то проверить транзистор на работоспособность очень трудно. Предложенное устройство позволяет за несколько секунд проверить любой транзистор, независимо от типа и проводимости.

Устройство очень простое и состоит из трех компонентов. Основная часть - трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение.
Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т. п.) база через базовый резистор 100 ом идет на одну из выводов (левый или правый вывод) трансформатора, средняя точка трансформатора (отвод) подключен к плюсу питания, эмиттер транзистора подключается к минусу питания, а коллектор к свободному выводу первичной обмотки трансформатора.

Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора. Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание.
Устройство по идее является простейшим блокинг - генератором. Питание 3,7 - 6 вольт, отлично подойдет всего один литий - ионный аккумулятор от мобильного телефона, но с аккумулятора заранее нужно выпаять плату, поскольку эта плата отключает питание потребление тока превышает 800 мА, а наша схема может в пиках потреблять такой ток.
Готовое устройство получается достаточно компактным, можно поместить в компактный пластмассовый корпус, например от конфет типа тик- так и у вас будет карманный прибор для проверки транзисторов на все случаи жизни.

© 2024 Строим с умом