Вконтакте Facebook Twitter Лента RSS

Делаем сварочный аппарат бармалея. Сварочный аппарат инверторного типа

Изготовление сварочного инвертора в домашних условиях – очень увлекательное дело, особенно для любителей самоделок. При этом можно и не иметь глубочайших электротехнических знаний, просто делать все строго в определенном порядке. К тому же, не будет лишним понять принцип работы такого устройства.

Основной смысл в том, чтобы собирать все самому – это приличная экономия средств, если основные показатели аппарата будут приблизительно такими же, как у тех, что предлагает торговая сеть.

Да и внешне самодельный сварочный инвертор, может не отличаться от заводского. Работу можно будет проводить, применяя электроды 3-5 миллиметров в диаметре при дуге до 10 миллиметров.


Основные данные

Собственноручно собранный по простой схеме сварочный инвертор сможет иметь данные вполне приличного устройства:

  • напряжение на входе 220 вольт;
  • на входе ток 32 ампера;
  • на выходе ток 250 ампера.

Обычно используют напряжение 220 вольт, но можно сделать аппарат и для напряжения 380 вольт. Трехфазные аппараты имеют несколько выше показатели.

Сборка блока питания

Монтаж начинается с намотки трансформатора, его функция – это обеспечение стабильным напряжением следующих за ним деталей. Для его изготовления используют феррит Ш 7х7 (можно Ш 8х8), на который наматывают разные по количеству витков обмотки: сто, пятнадцать, пятнадцать и двадцать, соответственно 0,3; 1; 0,2 и 0,3 миллиметров.

Для снижения вредного влияния возможного перепада сетевого напряжения, кольца провода необходимо класть на всю ширину катушки.

Первичную обмотку надо изолировать стеклотканью и намотать экран из провода 0,3 мм. Он должен покрыть всю ширину каркаса, а направление витков – совпадать с предыдущей обмоткой.


Последовательность работы с остальными обмотками такая же. На выходе должно быть от 20 до 25 вольт. Его можно отрегулировать подбором деталей. Синусоидальный ток преобразуется в постоянный с помощью диодов, соединенный, как «косой мост», а для охлаждения необходимо подобрать радиаторы, возможно, со старого компьютера.

Один охладитель закрепляется к верхним частям деталей и изолируется слюдяной прокладкой. Второй – к нижней части моста и крепится с использованием термопасты.

Выводы диодного моста направляются туда же, куда будут выходить и контакты транзисторов, что работают как преобразователи. Длина проводов, которые соединяют мост и транзисторы – не больше 15 сантиметров. Блок питания и инверторный блок разделяются металлической пластиной, приваренной к основанию.

Монтаж силового блока

Этот блок представляет собой трансформатор, что снижает U и увеличивает ток. Для его изготовления нужна пара сердечников Ш 20х208. Для изоляции их друг от друга модно использовать бумагу.

Намотка выполняется полоской из меди, ширина которой 40 миллиметров, а толщина – 0,25 миллиметров. Для прокладки витков можно использовать бумагу хорошего качества, а вторичную обмотку формируют, перекладывая фторопластовую полосу.


Монтировать понижающий трансформатор, используя толстый провод, не надо потому, что ток, имея высокую частоту, проходит по поверхности проводника и тот не нагревается внутри.

Нагрев деталей аппарата нужно уменьшать принудительным охлаждением. Для этой цели подойдет вентилятор из системного блока компьютера.

Сборка инверторного блока

Чтобы сделать сварочный инвертор своими руками необходимо перейти к следующему этапу – монтажу инверторного блока. Так, как этот узел преобразовывает ток из постоянного в переменный, нужны мощные транзисторы, которые будут то открываться, то закрываться, создавая высокую частоту.

В инструкцию для изготовления простого инвертора можно включить схему инверторного блока.

Есть смысл этот блок монтировать с применением нескольких транзисторов, чтобы частота была более стабильной и при выполнении сварки аппарат меньше гудел.


Корпус

Пошаговая сборка инвертора своими руками предусматривает подбор надежного корпуса для такого изделия. Для этой цели вполне подойдет старый системный блок от компьютера (чем древнее, тем лучше потому, что в нем толще металл). Можно самому изготовить коробку из листового металла, а внизу использовать гетинакс в пол сантиметра или больше.

Различные виды самодельных сварочных инверторов имеют общую черту – это управление работой аппарата. На передней панели устанавливают выключатель, ручку регулировки сварочного тока, контакты для проводки, контрольные лампы.

Таким образом, чтобы обзавестись таким нужным в домашней мастерской аппаратом, не обязательно покупать готовый инвертор. Можно изучить необходимую теорию, приобрести детали и самому собрать сварку, которая будет надежно работать.

Фото сварочного инвертора своими руками

СВАРОЧНЫЙ АППАРАТ СВОИМИ РУКАМИ

ОБЗОР СХЕМ СВАРОЧНЫХ ИНВЕРТОРОВ И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ

Начнем с довольно популярной схемы сварочного инвертора, довольно часто именуемой схемой Брамалея. Уж не знаю почему этой схеме приклеили данное имя, но в интернете довольно часто упоминается сварочный аппарат Бармалея.
Вариантов схемы инвертора Бармалея нашлось несколько, но топология у них практически одинаковая - прямоходовой однотактный преобразователь (довольно часто именуемый "косой мост", почему то), управляемый контроллером UC3845.
Поскольку этот контроллер в данной схеме является основным, то с принципа его работы и начнем.
Микросхема UC3845 выпускается несколькими производителями и состоит в серии микросхем UC1842, UC1843, UC1844, UC1845, UC2842, UC2843, UC2844, UC2845, UC3842, UC3843, UC3844, и UC3845.
Микросхемы отличаются друг от друга напряжением питания при котором стартуют и самоблокируются, температурным диапазоном работы, а так же небольшими схемотехническими изменениями, позволяющими длительность управляющего импульса в микросхемах ХХ42 и ХХ43 доводить до 100%, а у микросхем серии ХХ44 и ХХ45 длительность управляющего импульса не может превышать 50%. Цоколевка микросхем одинаковая.
В микросхему интегрирован дополнительный стабилитрон на 34...36 В (зависит от производителя), что позволяет не переживать за превышение напряженияпитания при использовании микросхемы в БП с ОЧЕНЬ широким диапазоном питающих напряжений.
Микросхемы выпускаются в нескольких типах корпусов, что существенно расширяет сферу использования

Микросхемы изначально проектировались как контроллеры для управления силовым ключом однотактного блока питания средней мощности и данный контроллер оснастили всем необходимым для увеличения его собственной живучести и живучести управляемого им блока питания. Микросхема может работать до частот 500 кГц, выходной ток оконечного каскада драйвера способен развить ток до 1 А, что в сумме позволяет проектировать довольно компактные блоки питания. Блок схема микросхемы приведена ниже:

На блоксхеме как раз красным выделен дополнительный триггер, который не позволяет длительности выходного импульса превысить 50%. Этот триггер установлен только в серии UCx844 и UCx845.
В микросхемах, выполненных в корпусах с восьмью выводами некоторые выводы объеденены внутри микросхемы, например VC и Vcc , PWRGND и GROUND .

Типовая схема импульсного блока питания на UC3844 приведена ниже:

Данный блок питания имеет косвенную стабилизацию вторичного напряжения, поскольку контролирует свое собственное питание, формируемое обмоткой NC. Это напряжение выпрямляется диодом D3 и служит для питания самой микросхемы после ее запуска, а пройдя делитель на R3 попадает на вход усилителя ошибки, который и управляет длительностью импульсов управления силовым транзистором.
При увеличении нагрузки амплитуда всех выходных напряждений трансформатора уменьшается, это приводит и к уменьшщению напряжения на выводе 2 микросхемы. Логика микросхемы увеличивает длительность управляющего импульса, в трансформаторе накапливается больше энергии и в результате амплитуда выходных напряжений возвращается к исходному значению. Если же нагрузка уменьшается, то напряжение на выводе 2 увеличивается, уменьшается длительность управляющих импульсов и снова амплитуда выходных напряжений возвращается к установленному значению.
В микросхему интегрирован вход для организации защиты от перегрузки. Как только на токоограничивающем резисторе R10 падение напряжения достигнет 1 В микросхема выключает управляющий импульс на затворе силового транзистора, тем самым ограничивая протекающий через него ток и исключая перегрузку блока питания. Зная величину этого управляющего напряжения можно регулировать ток сработки защиты изменяя величину токоограничивающего резистора. В данном случае максимальный ток через транзистор ограничивается 1,8 амперами.
Зависимость величины протекающего тока от номинала резистора можно расчитать по закону Ома, но каждый раз брать в руки калькулятор слишком лениво, поэтому расчитав один раз попросту занесем резутальтаты расчетов в таблицу. Напоминаю - нужно падение напряжения величиной один вольт, следовательно в таблице будут указаны лишь ток срабатывания защиты, номиналы резисторов и их мощность.

I, А 1 1,2 1,3 1,6 1,9 3 4,5 6 10 20 30 40 50
R, Ohm 1 0,82 0,75 0,62 0,51 0,33 0,22 0,16 0,1 0,05 0,033 0,025 0,02
2 х 0,33 2 х 0,1 3 х 0,1 4 х 0,1 5 х 0,1
P, W 0,5 1 1 1 1 2 2 5 5 10 15 20 25

Эта информация может понадобится, если пректируемый сварочный аппарат будет без трансформатора тока, а контроль будет осуществляться так же как и в базовой схеме - при помощи токоограничивающего резистора в цепи истока силового транзистора или в цепи эмиттера, при использовании транзистора IGBT.
Схема импульсного блока питания с непосредственным контролем выходного напряжения предлагается в даташнике на микросхему от Texas Instruments:

Данная схема контролирует выходное напряжение при помощи оптрона, яркость свечения светодиода оптрона определяет регулируемый стабилитрон TL431, что увеличивает коф. стабилизации.
В схему введены дополнительные элементы на транзисторах. Певрый имитирует систему софт-страрта, второй - увеличивает термостабильность за счет использования тока базы введенного транзистора.
Определить ток срабатывания защиты данной схемы труда не составит - Rcs равен 0,75 Ома, следовательно ток будет ограничиваться 1,3 А.
И предыдущая и эта схемы блоков питания рекомендуются в даташниках на UC3845 от "Texas Instruments", в даташниках остальных производителей рекомендутеся лишь первая схема.
Зависиммость частоты от номиналов частотозадающих резистора и конденсатора показаны на рисунке ниже:

Может невольно возникнуть вопрос - А ДЛЯ ЧЕГО НУЖНЫ ТАКИЕ ПОДРОБНОСТИ И ПОЧЕМУ РЕЧЬ ИДЕТ О БЛОКАХ ПИТАНИЯ МОЩНОСТЬЮ 20...50 ВАТТ??? СТРАНИЦА АНОНСИРОВАЛАСЬ КАК ОПИСАНИЕ СВАРОЧНОГО АППАРАТА, А ТУТ КАКИЕ ТО БЛОКИ ПИТАНИЯ...
В подавляющем большинстве простых сварочных аппаратов как раз и используется микросхема UC3845 в качестве управляющего элемента и без знания принципа ее работы возможно возникновение фатальных ошибок, способствующих выходу из строя не только копеешной микросхемы, но и довольно дорогих силовых транзисторов. К тому же я собираюсь проектировать сварочный аппарат, а не тупо клонировать чужую схему, искать ферриты, которые возможно даже придется покупать, для того, чтобы повторить чей то девайс. Не, меня такое не устраивает, поэтому берем имеющеюся схему и перетачиваем ее под то, что нужно нам, под те элементы и ферриты, которые есть в наличии.
Именно поэтому тут будет довольно много теории и несколько экспериментальных замеров и именно поэтому в таблице номиналов резисторов защиты использованы резисторы, включенные параллельно (голубые поля ячеек) и расчет сделан для токов более 10 ампер.
Итак, сварочный инвертор, который большинство сайтов называют сварочником Бармалея имеет следующую принципиальную схему:


УВЕЛИЧИТЬ

В верхней-левой части схемы блок питания для самого контроллера и по сути может использоваться ЛЮБОЙ блок питания с выходным напряжением 14...15 вольт и обеспечивающим ток в 1...2 А (2 А это для того, чтобы вентиляторы можно было поставить помощнее - в аппарате используются компьютерные вентиляторы и по схеме их аж 4 штуки.
Кстати сказать удалось найти даже сборник ответов по этому сварочному аппарату с какого то форума. Думаю это будет полезно тем, кто собрался чисто клонировать схему. ССЫЛКА НА ОПИСАНИЕ .
Регулировка тока дуги производится изменением опорного напряжения на входе усилителя ошибки, защита от перегрузки организована с использованием трансформатора тока ТТ1.
Сам контроллер работает на транзистор IRF540. В принципе там может использоваться любой транзистор с не очень большой энергией затвора Qg (IRF630, IRF640 и т.д.). Транзистор нагружен на управляющий трансформатор Т2, который непосредственно подает управлдяющие импульсы на затворы силовых IGBT транзисторов.
Чтобы управляющий трансформатор не намагничивался используется на нем выполнена размагничивающая обмотка IV. Вторичные обмотки управляющего трансформатора нагружены на затворы силовых транзисторов IRG4PC50U через выпрямитель на диодах 1N5819. Причем в схеме управления имеются форсирующие закрытие силовой части транзисторы IRFD123, которые при смене полярности напряжения на обмотках трансформатора Т2 открываются и всю энергию затворов силовых транзисторов гасят на себя. Подобные ускорители закрытия облегчают токовый режим драйвера и значительно сокращают время закрытия силовых транзисторов, что в свою очередь уменьшает их нагрев - время нахождения в линейном режиме значительно сокращается.
Так же для облегчения работы силовых транзисторови подавления импульсных помех, возникающих при работе на индуктивную нагрузку служат цепочки из резисторов на 40 Ом, конденсаторов на 4700 пкФ и диодов HFA15TB60.
Для окончательного размагничивания сердечника и подавления выбросов самоиндукции используется еще одна пара HFA15TB60, установленные правее по схеме.
На вторичной обмотке трансформатора установлен однополупериодный выпрямитель на диоде 150EBU02. Диод шунтирован помехоподовляющей цепочкой на резисторе 10 Ом и конденсаторе на 4700 пкФ. Второй диод служит для размагничивания дросселя ДР1, кторый во время прямого хода преобразователя накапливает магнитную энергию, а во время паузы между импульсами отдает эту энергию в нагрузку за счет самоиндукции. Для улучшения этого процесса как раз и устанавливается дополнительный диод.
В результате на выходе инвертора получается не пульсирующее напряжение, а постоянное с не большой пульсацией.
Следующей подмодификацией данной сварочного аппарта является схема инвертора приведенного ниже:

Сильно не вникал, что там намудрено по выходному напряжению, лично мне больше понравилось использование в качестве закрывающих силовую часть биполярных транзисторов. Другими словами в данном узле можно использоввать и полевики и биполярники. В принципе это как бы подразумевалось по умолчанию, главное - как можно быстрее закрыть силовые транзисторы, а каким образом это сделать уже второстепенный вопрос. В принципе используя более мощный трансформатор управления от закрывающих транзисторов можно и отказаться - достаточно на затворы силовых транзисторов подать не большое отрицательное напряжение.
Однако меня всегда смущало наличие управляющего трансформатора в сварочном аппарате - ну не люблю я моточные детали и по возможности стараюсь обходится без них. Перебор схем сварочников продолжился и была откопана следующая схема сварочного инвертора:


УВЕЛИЧИТЬ

Данная схема отличается от предшествующих отсутствием управляющего трансформатора, поскольку открытие-закрытие силовых транзисторов происходит специализированными микросхемами драйверов IR4426, которые в свою очередь управляются оптронами 6N136.
В этой схеме реализовано еще пара вкусностей:
- введен ограничитель выходного напряжения, выполненный на оптроне PC817;
- реализован принцип стабилизации выходного тока - трансформатор тока используется не как аварийный, а именно как датчик тока и принимает участие в регулировке выходного тока.
Такой вариант сварочного аппарата гарантирует более устойчивую дугу даже на не больших токах, поскольку при увеличении дуги ток начинает уменьшаться, а этот аппарат будет увеличивать выходное напряжение, стараясь удержать установленное значение выходного тока. Единственный недостаток - нужен галетный переключатель на как можно большее количество положений.
Так же попалась на глаза еще одна схема сварочного аппарата для самостоятельного изготовления. Заявлен выходной ток в 250 ампер, но это не главное. Главное - использование в качестве драйвера довольно популярной микросхемы IR2110:


УВЕЛИЧИТЬ

В этом варианте сварочника тоже используется ограничение выходного напряжения, но вот стабилизации тока нет. Есть еще одно смущение, причем довольно серьезное. каким образом заряжается конденсатор С30? В принципе во время паузы должно происходить доразмагничивание сердечника, т.е. полярность напряжения на обмотки силового трансформатора должна поменяться и чтобы не слетели транзисторы как раз и установлены диоды D7 и D8. Вроде бы этого кратковременно на верхнем выводе силового трансформатора должно появится напряжение на 0,4...0,6 вольта меньше чем общий провод, это довольнократкосрочное явление и есть некоторые сомнения в том, что С30 успеет зарядится. Ведь если он не зарядится верхнее плечо силовой части не откроется - не откуда будет взяться напряжению вольтодобавки драйвера IR2110.
В общем над этой темой имеет смысл поразмышлять более досконально...
Есть еще один вариант сварочного аппарата, выполненного по той же топологии, но в нем использовались отечесвенные детали и в больших количествах. Принципиальная схема приведена ниже:


УВЕЛИЧИТЬ

Прежде всго бросается в глаза силовая часть - по 4 штуки IRFP460. Причем автор в оригинальной статье утверждает, что первый вариант был собран на IRF740 по 6 штук в плечо. Это действительно "голь на выдумку хитра". Тут же сразу следует сделать запоминаку - в сварочном инверторе могут использоваться как IGBT транзисторы, так и транзисторы MOSFET. Для того, чтобы не путаться с определениями и цоколевкой вышаем рисуночек этих самых транзисторов:

Кроме этого имеет смысл отметить, что в данной схеме используется и ограничение выходного напряжения и режим стабилизации тока, который регулируется переменным резистором на 47 Ом - низкоомность данного резистора единственный недостаток данной реализации, но при желании такой найти можнопричем увеличение данного резистора до 100 Ом не критично, просто нужно будет увеличить и ограничивающие резисторы.
Еще один вариант сварочного аппарата попался на глаза штудируя иностранные сайты. В этом аппарате так же имеется регулировка тока, но выполнена она не совсем обычно. На вывод контроля тока изначально подается напряжение смещения и чем оно больше, тем требуется меньшее напряжение с трансформатора тока, следовательно, тем меньший ток будет протекать через силовую часть. Если же напряжение смещения минимально, то для достижения тока срабатывания ограничителя потребуется большее напряжение с ТТ, которое возможно лишь при протекании большого тока через первичную обмотку трансформатора.
Принципиальная схема данного инвертора приведена ниже:


УВЕЛИЧИТЬ

В этой схеме сварочного аппарата на выходе установлены электролитические конденсаторы. Мысль конечно же интересная, но для данного устройства потребуются электролиты с маленьким ESR, а на 100 вольт такие конденсаторы найти довольно проблематично. Поэтому я откажусь от установки электролитов, а поставлю пару-тройку конденсаторов MKP X2 на 5 мкФ, используемые в индукционных плитах.

СОБИРАЕМ СВОЙ СВАРОЧНЫЙ АППАРАТ

ПОКУПАЕМ ДЕТАЛИ

Прежде всего сразу скажу - сборка сварочного аппарата самостоятельно это не попытка сделать аппарат дешевле магазинного, поскольку в конечном итоге может получится так, что собранный аппарат получится дороже, чем заводской. Однако есть в этой затее и свои плюсы - данный аппарат можно приобрести в безпроцентный кредит, поскольку совсем не обязательно покупать сразу весь комплект деталей, а делать покупки по мере появления свободных денег в бюджете.
Опять же изучение силовой электроники и сборка подобного инвертора самостоятельно дает безценный опыт, который позволит собирать подобные устройства, затачивая непосредственно под свои нужды. Например собрать пуско-зарядное устройство с выходным током 60-120 А, собрать источник питания для плазмореза - устройства хоть и специфического, но для работающих с металлом штука ОЧЕНЬ полезная.
Если же кому то покажется, что я ударился в рекламу Али, то скажу сразу - да, я рекламирую Али, потому что меня устраивает и цена и качество. С тем же успехом я могу рекламировать нарезанные батоны Аютинского хлебозавода, но черный хлеб я покупаю Красно-Сулинский. Сгущенное молоко предпочитаю и Вам рекомендую, "Коровка из Кореновки", а вот творог гораздо лучше Тацинского молочного завода. Так что я готов рекламировать все, что попробовал сам и мне понравилось.

Для сборки сварочного аппарата потребуется дополнительное оборудование, которое необходимо для сборки и наладки сварочного аппарата. Данное оборудование тоже стоит каких то денег и если Вы действительно собираетесь заниматься силовой электроникой, то оно Вам пригодится и позже, если же сборка данного устройства является попыткой потратить меньше денег, то смело отказывайтесь от этой идеи и идите в магазин за готовым сварочным инвертором.
Подавляющее большинство комплектующих я покупаю на Али. Ждать приходится от трех недель до двух с половиной месяцев. Однако стоимость комплектующих значительно дешевле, чем в магазине радиодеталей к кторому мне еще нужно ехать 90 км.
Поэтому сразу сделаю не большую инструкцию как лучше покупать компоненты на Али. Ссылки на используемые детали я буду давать по мере их упоминания, причем давать буду на результаты поиска, потому что есть вероятность того, что через пару-тройку месяцев у какого то продавца этого товара не будет. Так же для сравнения буду давать цены на упоминаемые компоненты. Цены будут в рублях на момент написания данной статьи, т.е. середина марта 2017 года.
Перейдя по ссылке на результаты поиска прежде всего следует отметить, что сортировка произведена по количеству покупок того или иного товара. Другими словами Вы уже имеете возможность посмотреть сколько именно этого товара какой то продавец продал и какие отзывы на эти товары получил. Погоня за низкой ценой далеко не всегда свляется правильной - Китайские предприниматели стараются реализовать ВСЮ продукцию, поэтому иногда случаются и перемаркированные элементы, а так же элементы после демонтажа. Поэтому смотрите на количество отзывов о товаре.

Если же есть эти же компоненты по более привлекательной цене, но количество продаж у этого продавца не большое, то имеет смысл обратить внимание общее количетсво положительных отзывов о продавце.

Имеет смысл обратить внимание на фотографии - наличие самой фотографии торвара говорит об ответственности продавца. А на фото как раз видно какая маркировка, это частенько помогает - маркировку лазером и краской видно и на фото. Силовые транзисторы я покупаю с алзерной маркировкой, а вот IR2153 брал и с маркировкой краской - микросхемы рабочие.
Если выбираются силовые транзисторы, то довольно часто я не брезгую транзисторами с демонтажа - у них обычно разница по цене довольно приличная, а для прибора, собираемого самостоятельно можно использовать и детали с более короткими ногами. Отличить детали не сложно даже по фото:

Так же несколько раз я наскакивал на разовые акции - продавцы без рейтинга вообще выставляют на продажу какие то компоненты по ОЧЕНЬ смешным ценам. Разумеется, что покупка осуществляется на свой страх и риск. Однако я делал пару покупок у подобных продавцов и обе удачные. Последний раз я приобрел конденсаторы MKP X2 на 5 мкФ за 140 рублей 10 штук.


Заказ пришел довольно быстро - чуть больше месяца, 9 штук на 5 мкФ, а один, точно такого же размера на 0,33 мкФ 1200 В. Спор открывать я не стал - у меня для индукционных игрушек все емкости на 0,27 мкФ и как бы на 0,33 мкФ мне даже пригодится. Да и цена уж больно смешная. Емкости все проверил - рабочие, хотел заказать еще, но уже была вывеска - ТОВАР БОЛЕЕ НЕ ДОСТУПЕН.
До этого брал несколько раз демонтажные IRFPS37N50, IRGP20B120UD, STW45NM50. Все транзисторы исправны, единственно что несколько огорчило, так это на STW45NM50 ноги были переформованы - на трех транзисторах (из 20-ти) выводы буквально отпали при попытке их согнуть под свою плату. Но цена была уж слишком смешной, чтобы на что то обижаться - 20 штук за 780 рублей. Транзисторы эти теперь используются как подстановочные - корпус спилен до вывода, припяны провода и залито эпоксидным клеем. Один до сих пор жив, прошло уже два года.

Пока с силовыми транзисторами вопрос открытый, а вот разъемы для электрододержателя нужны будут по любому сварочному аппарату. Поиски были продолжительными и довольно активными. Дело в том, что сильно смущает разница в цене. Но для начала о маркировке разъемов для сварочного аппарата. На Али используется Европейская маркировка (ну так у них написано), поэтому будем танцевать от их обозначений. Правда шикароного танца не получится - данные разъемы раскиданы по различным категориям, начиная от USB разъемов, ПАЯЛЬНЫХ ЛАМП и заканчивая ПРОЧЕЕ.

Да и по названию разъемов тоже не все так гладко, как хотелось бы... Я был ОЧЕНЬ сильно удивлен, когда в поисковую строку на Гуглохроме и ОС WIN XP вбил DKJ35-50 и получил НЕТ РЕЗУЛЬТАТОВ , а тот же запрос на том же Гуглохроме, но WIN 7 дал хоть какие то результаты. Ну для начала небольшая табличка:

DKZ DKL DKJ
МАКС
ТОК, А
ДИАМЕТР
ОТВ-ТИЯ/
ШТЕКЕРА,
ММ
СЕЧЕНИЕ
ПРОВОДА,
ММ2
DKZ10-25 DKL10-25 DKJ10-25 200 9 10-25
DKZ35-50 DKL35-50 DKJ35-50 315 13 35-50
DKZ50-70 DKL50-70 DKJ50-70 400 13 50-70
DKZ70-95 DKL70-95 DKJ70-95 500 13 70-95

Не смотря на то, что отверстия и штекеры у разъемов на 300-500 ампер одинаковые они реально способны проводить разный ток. Дело в том, что во время проворачивания разъема штекерная часть упирается торцом в торец ответной части и поскольку диаметры торцов у более мощных разъемов больше получается большая площадь контакта, следовательно разъем способен пропускать больший ток.

ПОИСК РАЗЪЕМОВ ДЛЯ СВАРОЧНЫХ АППАРАТОВ
ПОИСК DKJ10-25 ПОИСК DKJ35-50 ПОИСК DKJ50-70
ПРОДАЮТСЯ КАК В РОЗНИЦУ, ТАК И КОМПЛЕКТАМИ

Разъемы DKJ10-25 я покупал год назад и у этого продавца их больше нет. Буквально пару дней назад я заказал пару DKJ35-50. Покупал . Правда пришлось сначала объясняться с продавцом - в описании написано, что под провод 35-50 мм2 , а на фоторгафии 10-25 мм2 . Продавец заверил, что это разъемы под провод 35-50 мм2 . Что пришлет увидим - есть время подождать.
Как только первый вариант сварочного аппарата пройдет испытания начну собирать второй вариант с гораздо большим набором функций. Не буду скромничать - уже больше полугода пользуюсь сварочным аппаратом AuroraPRO INTER TIG 200 AC/DC PULSE (есть точно такой же и именем "КЕДР"). Аппарат мне очень нравится, а его возможности просто вызвали бурю восторга.

Но в процессе освоения сварочного аппарата выяснилось несколько недостатков, которые хотелось бы устранить. Я не буду вдаваться в подробности что именно мне не понравилось, поскольку аппарат действительно весьма не дурен, но хочется больше. Поэтому собственно и взялся за разработку своего сварочного аппарата. Аппарат типа "Бармалей" будет тренировочным, а следующий уже должен будет превзойти имеющуюся "Аврору".

ОПРЕДЕЛЯЕМСЯ С ПРИНЦИПИАЛЬНОЙ СХЕМОЙ СВАРОЧНОГО АППАРАТА

Итак, просмотрены все варианты схем, заслуживающие внимания, приступаем к сборке собственного сварочного аппарата. Для начала нужно определится с силовым трансформатором. Покупать ш-образные ферриты я не стану - имеются в наличии ферриты от строчных трансформаторов и есть довольно много одинаковых. Но форма данного сердечника довольно своеобразна, да и магнитная проницаемость на них не указана...
Придется сделать несколько тестовых замеров, а именно сделать каркасик под один сердечник, намотать на нем с полсотни витков и одевая этот каркасик на сердечники выбрать те, у которых индуктичность будет максимально одинаковая. Таким образом будут отобраны сердечники, которые будут использованы для сборки общего сердечника, состоящего из нескольких магнитопроводов.
Далее нужно будет выяснить, сколько витков необходимо намотать на первичной обмотке, чтобы сердечник и в насыщение не вогнать и использовать максимально габаритную мощность.
Для этого можно воспользоваться статьей Бирюкова С. А. (СКАЧАТЬ), а можно по мотивам статьи собрать свой собственный стенд для проверки насыщаемости сердечника. Второй способ для меня предпочтительней - для данного стенда я использую ту же микросхему, что и для сварочного аппарата - UC3845. Прежде всего это позволит "пощупать" микросхему живьем, проверить диапазоны регулировок, а установив в стенд панельку для микросхем я смогу проверять данные микросхемы непосредственно перед установкой в сварочный аппарат.
Собирать будем следующую схему:

Здесь почти классическая схема включения UC3845. На VT1 собран стабилизатор напряжения для самой микросхемы, поскольку диапазон питающих напряжения самого стенда довольно большой. VT1 любой в корпусе ТО-220 с током от 1 А и напряжением К-Э выше 50 В.
Кстати о питающих напряжениях - нужен БП с напряжением минимум 20 вольт. Максимальное напряжение не более 42 вольт - для работы голыми руками это еще безопасное напряжение, хотя лучше выше 36 не подниматься. Блок питания должен обеспечивать ток не менее 1 ампера, т.е. иметь мощность от 25 Вт и выше.
Здесь стоит учитывать, что данный стенд работает по принципу бустера, поэтому суммарно напряжение стабилитронов VD3 и VD4 должно быть как минимум на 3-5 вольт больше напряжения питания. Превышать разницу более чем на 20 вольт крайне не рекомендуется.
В качестве блока питания для стенда можно использовать автомобильное зарядное устройство с классическим трансофрматором, не забыв поставить на выход зарядного пару конденсаторов на 1000мкФ 50В. Регулятор тока зарядки ставим на максимум - больше чем нужно схема не возьмет.
Если нет подходящего блока питания и собрать его не из чего, то можно ПРИОБРЕСТИ ГОТОВЫЙ БЛОК ПИТАНИЯ , выбрать можно и в пластиковом корпусе, и в металлическом. Цена от 290 рублей.
Транзистор VT2 служит для регулировки подаваемого на индуктивность напряжения, VT3 - формирует импульсы на исследуемой индуктивности, а VT4 - выступает в роли размагничивающего индуктивность устройства, так сказать электронная нагрузка.
Резистором R8 - частота преобразования, а R12 подаваемое на дроссель напряжение. Да, да, именно дроссель, поскольку пока у нас нет вторичной обмотки этот кусок трансформатора есть не что иное как самый обычный дроссель.
Резисторы R14 и R15 измерительные - с R15 производится контроль тока микросхемой, а с обоих прозводится контроль формы напряжения падения. Используется два резистора для увеличения напряжения падения и меньшего сбора мусора осциллографом - клемма X2.
Тестируемы дроссель подключается к клеммам X3, а к клеммам X4 подключается напряжение питания стенда.
На схеме показано то, что собрано у меня. Однако эта схема имеет довольно не приятный недостаток - напряжение после транзистора VT2 сильно зависит от нагрузки, поэтому я в своих замерах использовал положение движка R12, при котром транзистор полностью открыт. Если доводить данную схему до ума, то желательно вместо полевика использовать параметрический регулятор напряжения, ну например вот такой:

Я что то еще делать с этим стендом не буду - у меня есть ЛАТР и я могу спокойно изменять напряжение питания стенда подключив тестовый, обычный трансформатор через ЛАТР. Единственно, что пришлось добавить - вентилятор. VT4 работает в линейном режиме и греется довольно бодро. Чтобы не перегревать общий радиатор воткнул вентилятор и ограничительными резисторами.

Здесь логика довольно простая - я вбиваю параметры сердечника, делаю расчет для преобразователя на IR2153, а выходное напряжение ставлю равным выходному напряжению своего блока питания. В итоге у меня получается для двух колец К45х28х8 для вторичного напряжения необходимо намотать 12 витков. Мотаемс...

Начинаем с минимальной частоты - за перегрузку транзистора можно не беспокоится - сработает ограничитель тока. Осциллографом становимся на клеммы Х1, плавно увеличиваем частоту и наблюдаем следующую картинку:

Далее составляем пропорцию в Экселе для вычисления количества витков в первичной обмотке. Результат будет существенно отличаться от расчетов в программе, но даем себе отчет, что программа учитывает и время пауз и напряжения падения на силовых транзисторах и выпрямительных диодах. К тому же увеличесние количества витков не приводит к пропорциональному увеличению индуктивность - там квадратичная засимость. Поэтому увеличение количества витков приводит к существенному увеличению индуктивного сопротивления. ПРограмам это тоже учитывает. Мы же сделаем не много по другому - чтобы дать поправку на эти параметры в свою таблицу мы вносим уменьшение на 10% первичного напряжения.
Рядом строим вторую пропорцию по которой можно будет вычислить нужное количество витков под вторичные напряжения.
Перед пропорциями с количеством витков есть еще две таблички с помощью которых можно вычислить количество витков и индуктивность выходного дросселя сварочного аппарата, что для данного устройства тоже довольно важно.

В этом файле пропорции лежат на ЛИСТЕ 2 , на ЛИСТЕ 1 расчеты импульсных блоков питания для видео о расчетах в Экселе. Решил все таки дать свободный доступ. Видео, котором идет речь здесь:

Текстовый вариант о том как составить данную таблицу и исходные формулы .

С расчетами закончили, но осталась червоточина - схема стенда простая как три копейки, показала вполне приемлемые результаты. Может собрать полноценный стенд с питанием непосредственно от сети 220? Но гальваническая связь с сетью это не очень хорошо. Да и удалять накопленную индуктивностью энергию при помощи линейного транзистора тоже не очень хорошо - нужен будет ОЧЕНЬ мощный транзистор с ОГРОМНЫМ радиатором.
Ладно, нужно не много подумать...

Как выяснить насыщаемость сердечника вроде разобрались, выбираем сам сердечник.
Уже упоминалось, что искать и покупать Ш-образный феррит лично мне слишком лениво, поэтому Достаю свой ящик с ферритами от строчных трансформаторов и выбираю ферриты одного размера. Затем делаю оправку именно для одного сердечника и мотаю на ней витков 30-40 - чем больше витков - тем точнее получатся результаты измерений индуктивности. Мне нужно выбрать одинаковые сердечники.
Сложив получившиеся в Ш-образную конструкцию делаю оправку и мотаю пробную обмотку. Пересчитав количество витков первички выясняется, что габаритной мощности маловато будет - Бармалеи содержат 18-20 витков первички. Беру сердечники большего размера - остались от каких то старых заготовок и начинается пара часов тупизма - проверяя середчнки по методике, изложенной в первой части статьи количество витков получается даже больше, чем у счетверенного сердечника, а я использовал шесть коплектов и размер гораздо больше...
Лезу в программы расчета "Старичка" - он же Денисенко. На всякий случай вбиваю сдвоенный сердечник Ш20х28. Расчет показывает, что для частоты 30 кГц количество витков первички равно 13-ти. Допускаю мысль, что "лишнии" витки намотаны для исключения насыщения на 100%, ну и зазор тоже нужно компенсировать.

Перед вводом своих новых сердечников пересчитваю площадь круглых краев сердечника и вывожу значения для якобы прямоугольных краев. Расчет делаю для мостовой схемы, поскольку в однотактном преобразователе прикладывается ВСЕ имеющиеся первиное напряжение. Вроде все сходится - с данных сердечников можно взять порядка 6000 Вт.

По ходу выясняется, что в программах какой то косячок - полностью одинаковые данные для сердечников в двух программах дают разные результаты - ExcellentIT 3500 и ExcellentIT_9 вещают разную мощность получающегося трансформатора. Разница в несколько сотен ватт. Правда количество витков первичной обмотки совпадают. Но если количество витков первички одинаковое, то и габаритная мощность дожна быть одинаковая. Еще часик уже повышенного тупизма.
Чтобы не пинать посетителей на поиски программ Старичка собрал их в один сборник и упаковал в один архив, который можно СКАЧАТЬ . Внутри архива практически все программы созданные Старичком, которые удалось найти. На каком то форуме тоже видел подобный сборник, но вот на каком чет не припомню.
Для решения возникшей проблемы еще раз перечитываю статью Бирюкова...
Становлюсь осциллографом на резистор в цепи истока и начинаю наблюдать измения формы падения напряжения на разных индуктивностях.
На не больших индуктивностях действительно происходит перегиб формы напряжения падения на истоковом резисторе, а вот уже на счетверенном сердечнике от ТДКС она линейна хоть на частоте 17 кГц, хоть на 100 кГц.
В принципе можно использовать данные из программ-калькуляторов, но на стенд возлагались надежды и они реально рушаться.
Не спешно откидываю витки на сшестеренном сердечнике и прогняю его на стенде наблюдая за изменниями осциллограм. Реально какая то фигня! Ток ограничивается стендом еще до того как ничается изгибаться кривая напряжения...
Малой кровью обойтись не получается - даже увеличив ограничение тока до 1А падение напряжение на истоковм резисторе все равно линейное, но появляется закономерность - дойдя до определенной частоты ораничение тока выключается и длительность импульса начинает меняться. Все таки для этого стенда индуктивность слишком большая...
Остается проверить мои подозрения и намотать пробную обмотку на 220 вольт и...
Достаю с полки своего монстра - давненько я им не пользовался.

Описание данного стенда с чертежом печатной платы .
Прекрасно понимаю, что собирать подобный стенд ради сборки сварочного аппарата занятие довольно трудоемкое, поэтому приведенные результы измерений это лишь промежуточный результат, чтобы иметь хоть какое представление о том, какие сердечники и как можно использовать. Далее, в процессе сборки, когда уже будет готова печатная плата на рабочий сварочник я еще раз перепроверю сделанные в этих замерах результаты и попытаюсь разаработать методику безошибочной намотки силового трансформатора с использованием готовой платы как проверочного стенда. Ведь маленький стенд вполне работоспособен, но только для маленьких индуктивностей. Можно конечно попробовать поиграться с количеством витков, уменьшая их до 2-х или 3-х, но даже на перемагничивание такого массивного сердечника требуется не мало энергии и блоком питания в 1 А уже не отделаешься. Методика с использованием стенда перепроверилась при использовании традиционного сердечника Ш16х20, сложенный вдвое. На всякий случай размеры Ш-образных отечественных сердечников и рекомендуемые замены на импортные сложил .
Так что с сердечниками ситуация хоть и прояснилась, но на всякий случай результаты будут перепроверены уже на однотактном инверторе.

Пока же начнем изготовление жгута для трансформатора сварочного аппарата. Можно свить жгут, можно склеить ленту. Мне всегда больше нравились ленты - по трудоемкости они конечно превосходят жгуты, но плотность намотки гораздо выше. Следовательно можно снизить напряженность в самом проводе, т.е. в расчет закладывать не 5 А/мм2 , как обычно делается для подобных игрушек, а к примеру 4 А/мм2 . Это заметно облегчит тепловой режим и скорей всего даст возможность получить ПВ равным 100%.
ПВ - один из наиболее важных параметров сварочных аппаратов, ПВ это П родолжительность В ключения, т.е. время не прерывной сварки на токах близких к максимальным. Если ПВ равно 100% на максимальном токе, то это уже автоматически переводит сварочный аппарат в разъряд профессиональных. Кстати даже у многих профессиональных ПВ равно 100% только при выходном токе равным 2/3 от максимального. Экономят на системах охлаждения, но я то вроде собрался делать сварочный аппарат для себя, следовательно я могу себе позволить и гораздо большие площади теплоотводов для полупроводников, а для трансформатора сделать более легкий тепловой режим...

Собрать самодельный инверторный сварочный аппарат по силам даже домашнему мастеру, не обладающему глубокими познаниями в электротехнических процессах. Основным требованием является соблюдение технологии монтажа, соответствие схеме и понимание принципа работы устройства. Если своими руками создать инвертор, то его параметры и производительность не станут значительно разниться с заводскими моделями, но экономия может получиться приличная.

Простой самодельный аппарат инверторного типа позволит качественно осуществлять сварочные операции. Даже инвертор с простой схемой позволяет работать с электродом от 3 до 5 мм и дугой до 1 см.

Характеристики

Подобный сварочник для домашнего применения может обладать следующими параметрами:

  • Уровень напряжения – 220 вольт.
  • Входная сила тока – 32 ампера;
  • Выходная сила тока – 250 ампер.

Для бытового применения подходит инвертор, который функционирует от бытовой электросети 220 В. Если есть необходимость, то возможно собрать более мощное устройство, работающее от 380 В. Он отличается более высокой производительностью по сравнению с однофазным сварочным инверторным аппаратом.

Особенности функционирования

Для начала необходимо разобраться, как функционирует инвертор. По сути, он является компьютерным блоком питания. В нем можно наблюдать преобразование электроэнергии в такой последовательности:

  • Входное переменное напряжение трансформируется в постоянное.
  • Потребляемый ток частотой 50 Гц преобразовывается в высокочастотный.
  • Снижается выходное напряжение.
  • Выходной ток выпрямляется, требуемая частота сохраняется.

Подобные преобразования необходимы для снижения массы оборудования и его габаритов.

Трансформаторные сварочные аппараты обладают чувствительным весом и размерами. За счет значительной силы тока в них можно осуществлять дуговое сваривание. Для повышения силы тока и понижения напряжения вторичная обмотка предполагает наличие меньшего количества витков, а сечение провода увеличивается. В итоге трансформаторный сварочник тяжел и габаритен.

Инверторный же принцип позволяет снизить эти показатели в разы. Схема подобного аппарата предполагает повышение частоты до 60-80 кГц, что способствует снижению его габаритов и веса. Чтобы реализовать подобное преобразование применяются силовые полевые транзисторы. Они сообщаются меж собой именно с этой частотой. Питает их постоянный ток, поступающий от выпрямляющего устройства, в качестве которого применяется диодный мост. Значение напряжения выравнивают конденсаторы.

После транзисторов ток передается к понижающему трансформатору. Он представляет собой небольшую катушку. Малые размеры трансформаторной катушки инвертора обеспечены частотой, многократно увеличенной полевыми транзисторами. В итоге получаются аналогичные с трансформаторным аппаратом характеристики, но со меньшим весом и размером.

Что необходимо для сборки

Чтобы создать подобную самоделку необходимо учитывать характеристики схемы, т. е. потребляемое напряжение и ток. Выходной силы тока в 250 ампер достаточно для создания прочного шва. Чтобы реализовать задумку потребуются следующие детали:

  • Трансформатор.
  • Первичная обмотка (100 витков с проводом ⌀ 0,3 мм).
  • 3 обмотки. В наружной: 20 витков, ⌀ 0,35 мм. В средней: 15 и ⌀ 0,2. Во внутренней 15 и ⌀ 1 мм.

Помимо этого, до начала сборки инвертора необходимо приготовить инструменты и элементы для разработки электронных схем. Потребуются:

  • Отвертки;
  • Паяльник;
  • Ножовка по металлу;
  • Крепеж;
  • Электронные элементы;
  • Медные провода;
  • Термобумага;
  • Электротехническая сталь;
  • Стеклоткань;
  • Текстолит;
  • Слюда.

Схемы

Принципиальная электрическая схема инвертора – один из наиболее ответственных моментов при проектировании или ремонте инверторного аппарата. Поэтому рекомендуем сначала подробно изучить варианты, а потом приступать к их реализации.

Список радиоэлементов


Силовая часть

Блоку питания отводится одна из ведущих ролей в инверторном аппарате. Он представляет собой трансформатор, который намотан на феррите. Он обеспечивает стабильное понижение напряжения и повышение значения тока. Необходимо 2 сердечника Ш20х208 2000 нм.

Для создания термоизоляции между обмотками инвертора применяется термобумага. Чтобы свести к минимуму отрицательное воздействие при постоянных перепадах напряжения в электросети, обмотка должна проводится по всей ширине сердечника.

Для обмотки трансформатора специалисты рекомендуют применение медной жести, имеющую ширину 40 мм и толщину 0,3 мм. Ее нужно обернуть в термобумагу 0,05 миллиметров (кассовая лента). Специалисты объясняют это тем, что во время сварки высокочастотный ток вытесняется на поверхность толстых проводов, а сердцевина не задействуется и выделяется много тепла. Поэтому обычные проводники не подходят. Исключить подобный эффект можно при помощи проводников со значительной поверхностной площадью.

Аналогом медной жести, который допускается использовать, является провод ПЭВ с сечением 0,5-0,7 мм. Он является многожильным с воздушными зазорами между жилами, что позволяет уменьшить нагревание.

После создания первичного слоя в этом же направлении наматывается экранирующий провод со стеклотканью. Этот провод (подобного диаметра) обязан полностью перекрыть стеклоткань. Таким же образом необходимо действовать и с другими обмотками трансформатора. Их необходимо изолировать друг от друга при помощи указанных выше изоляторов.

Чтобы напряжение от трансформатора к реле было на уровне 20 – 25 вольт, необходимо правильно выбрать резисторы. Главной задачей питающего блока инвертора является изменение переменного тока в постоянный. Реализует это диодная мостовая схема типа «косой мост».

В работе диоды инверторного аппарата будут греться. Поэтому их необходимо размещать на радиаторе. Допускается применять радиаторы от компьютеров. Благо они сейчас широко распространены и недороги. Потребуется 2 радиатора. Верхний элемент моста фиксируется на одном, а нижняя – на втором. При этом при монтаже первого необходимо использовать прокладку из слюды, а во втором случае – термопасту.

Выход диодного моста – в том же направлении, что и выход транзисторов. Использовать провода длиной не более 15 см. Основа инверторного блока – транзисторы. Мост требуется отделять от блока питания листом металла, который впоследствии прикрепляется к корпусу.

Монтаж диодов на радиаторе

Инверторный блок

Основной задачей этого узла инвертора является трансформация выпрямленного тока в высокочастотную переменную составляющую. Исполнять эту функцию призваны силовые транзисторы, открывающиеся и закрывающиеся на высокой частоте.

Создавать преобразовывающий узел инверторного аппарата лучше не с одним транзистором помощнее, а с использованием нескольких более слабых. За счет этого стабилизируется частота тока и минимизируется шумовой эффект во время сварки.

В схеме инвертора должны присутствовать конденсаторы. Соединяются в последовательной цепи. Выполняют 2 основные задачи:

  • Минимизируют резонансные выбросы блока питания.
  • Снижают потери транзисторного блока, возникающие после включения. Объясняется это тем, что транзистор открывается скорее. Скорость закрытия заметно меньше. При этом происходит потеря тока и нагреваются ключи в транзисторном блоке.

Система охлаждения

Силовые элементы преобразователя во время сварки будут значительно нагреваться. Это может быть причиной поломки. Для исключения этого помимо упомянутых выше радиаторов следует применять вентилятор, исключающий перегрев и обеспечивающий стабильное охлаждение.

Одного вентилятора достаточной мощности может быть достаточно. Однако при использовании элементов старого ПК, то может потребоваться до 6 штук, 3 из которых необходимо размещать возле трансформатора.

Чтобы полностью защитить самодельный инвертор от перегрева можно задействовать датчик температуры. Его следует смонтировать на наиболее греющийся элемент с радиатором. Элемент сможет отключить питание при достижении определенной температуры, а индикация сигнализировать о критическом уровне.

Для эффективной и стабильной работы системы вентиляции инвертора необходимо обеспечить постоянный правильный забор воздуха. Для этого отверстия, по которым будет забираться воздух, не должны ничем перекрываться. В корпусе инвертора следует предусмотреть достаточное количество отверстий. При этом размещать их нужно на противоположных поверхностях корпуса.

Управление

При размещении электронных плат аппарата возможно применять фольгированный текстолит с толщиной 0,5 – 1 миллиметр.

Чтобы обеспечить автоматическое управление работой инверторной сварки следует купить и смонтировать ШИМ-контроллер. Он будет стабилизировать силу сварного тока и уровень напряжения. Для удобного управления в лицевой части размещаете все органы управления и точки подключения.

Корпус

После создания главных элементов инверторной сварки можно приступать к подготовке корпусных деталей. При планировании нужно учитывать ширину трансформатора, так как он должен беспрепятственно размещаться в корпусе. Исходя из этого размера следует добавить примерно 70% пространства для остальных деталей. Защитный кожух возможно сделать из листового железа, толщиной 0,5-1 миллиметра. Соединение элементов можно проводить при помощи сварки, болтов. Более изысканным вариантом будет цельная конструкция из выгнутых исходных материалов. Обязательны ручки и крепления для ремня, чтобы переносить аппарат.

При разработке инвертора нужно учесть возможность простой разборки для доступа к внутренним компонентам, чтобы их легко отремонтировать. Лицевая сторона также должна содержать:

  • Переключатель силы тока;
  • Кнопка, которой аппарат будет включаться/отключаться;
  • Световые элементы индикации;
  • Разъемы для подключения кабелей.

Заводские инверторы окрашиваются порошковым красителем. В быту можно использовать обычную краску. Нанести покрытие стоит для исключения появления ржавчины.

Подключение

Собранный сварочный аппарат нужно подключать в электросеть. При подключении к розетке следует предусмотреть наличие предохранителя или автоматического выключателя. Для защиты на входе в инвертор можно установить автоматический выключатель на 25 ампер.

Если точка подключения удалена, то можно использовать удлинитель.

Включение аппарат происходит по стандартной схеме – с помощью кнопки «вкл/откл». Должна загореться индикация, обычно для этого используется зеленый светодиод.

Производить подключение к сети необходимо проводом, имеющим сечение минимум 1,5 мм 2 . Однако оптимальным сечением будет провод 2,5 мм 2 .

Перед включением аппарата в электросеть следует проверить наличие изоляции всех высоковольтных элементов от корпусных деталей.

Проверка работоспособности

После проведения всех работ по сборке и отладке необходимо осуществить проверку работоспособности созданного инвертора.

По рекомендациям специалистов необходимо провести проверку силы тока и напряжения аппарата с использованием осциллографа. Нижняя петля по напряжению должна составлять до 500 вольт, не превышая значения в 550 В. Если все конструктивные требования соблюдены, то уровень напряжения будет составлять 330 – 350 вольт. Но этот метод доступен не всегда, ведь не у каждого дома имеется свой подобный измерительный прибор.

Зачастую проверка проводится в действии непосредственно сварщиком. Для этого проводится создание пробного шва с полным выгоранием электрода. По окончанию пробного сваривания нужно проверить температуру на трансформаторе. Если она зашкаливает, то в схеме имеются какие-то недоделки и следует все перепроверить.

Если температура силового блока в норме, то можно провести еще 2-3 пробных захода. После этого проверить температуру радиаторов. Они также могут перегреваться. Если после двух – трех минут они приходят в норму, то можно смело продолжать работу.

Процедура сборки аппарата не отличается сложностью. Наиболее важным этапом является настройка инверторного аппарата. Может быть, что придется обратиться за помощью к специалисту.

1. Для начала нужно подключить 15 вольт к ШИМ с одновременным подключением одного конвектора. Так можно снизить нагрев и шумность во время работы.

2. Чтобы замыкать резистор нужно подключать реле. Оно подключается при окончании зарядки конденсаторов. За счет этого можно значительно снизить колебания напряжения во время подключения к электросети 220 вольт. Без резистора при прямом подключении возможен взрыв.

3. Проверить срабатывание реле замыкания резистора спустя пару секунд после подачи тока к плате ШИМ. Проконтролировать наличие на плате импульса прямоугольной формы, после отработки реле.

4. Подача питания 15 вольт на мост для проверки его работоспособности и правильности сборки. Сила тока должна быть не выше 100 мА на холостом ходу.

5. Проверка корректности размещения фаз. Применять осциллограф. На мостовую схему от конденсаторов через лампу подается 200 вольт с нагрузкой 200 Вт. На ШИМ выставляется частота 55 кГц. Подсоединяется осциллограф, проверяется форма сигнала и уровень напряжения (не более 350 вольт).

Для определения частоты аппарата следует медленно понижать частоту ШИМ до тех пор, пока на ключе IGBT не произойдет небольшой заворот. Полученное значение частоты нужно разделить на 2 и прибавить частоту перенасыщения. В итоге получится рабочее колебание частоты трансформатора.

Трансформатор аппарата не должен издавать никаких шумов. При их наличии необходимо проверять полярность. К диодному мосту можно подключать питание для теста через подходящую бытовую технику. К примеру, подойдет чайник, имеющий мощность 3000 Вт.

Идущие к ШИМ проводники нужно выполнять короткими. Их требуется скручивать и размещать дальше от источника помех.

6. Постепенно повышается ток при помощи резистора. При этом необходимо прислушиваться к инвертору и контролировать значения на осциллографе. На нижнем ключе не должно быть более 500 вольт. Среднее значение – 340. Если присутствуют шумы, то возможна поломка IGBT.

7. К свариванию приступать после 10 секунд. Проверяются радиаторы, если не нагрелись, то работу продлевать еще на секунд 20. После повторной проверки сваривание может продолжаться от одной минуты и дольше.

Безопасность

Все проводимые операции, за исключением проверки работоспособности, необходимо проводить исключительно на обесточенном оборудовании. Каждый элемент рекомендуется заранее проверить, чтобы после установки он не вышел из строя из-за перенапряжения. Основные правила электробезопасности также обязательны к выполнению.

Таким образом сделать самодельную инверторную сварку по силам практически каждому. Предложенное описание должно помочь разобраться во всех нюансах. Если изучить видео уроки и фото материалы, то собрать устройство не составит труда.

Благодаря своей мобильности сварочные инверторные аппараты получили широкое применение в быту и на производстве. Они обладают огромными преимуществами по сравнению со сварочными трансформаторными агрегатами для сварочных работ. Принцип действия, устройство и их типовые неисправности должен знать каждый. Не у всех есть возможность приобрести сварочный инвертор, поэтому радиолюбители выкладывают схемы сварочного инвертора своими руками в интернет.

Общие сведения

Трансформаторные сварочные аппараты стоят сравнительно недорого и легко ремонтируются из-за их простого устройства. Однако они обладают значительным весом и чувствительны к напряжению питания (U). При низком U производить работы невозможно, так как происходят значительные перепады U, в результате которого могут выйти из строя бытовые приборы. В частном секторе часто бывают проблемы с линиями электропередач, так как в бывших странах СНГ большинство ЛЭП требуют замены кабеля.

Электрический кабель состоит из скруток, которые часто окисляются. В результате этого окисления возникает рост сопротивления (R) этой скрутки. При значительной нагрузке они нагреваются, а это может привести к перегрузке ЛЭП и трансформаторной подстанции. Если подключать сварочный аппарат старого образца к счетчику электроэнергии, то при низком U будет срабатывать защита («выбивать» автоматы). Некоторые пытаются подключить сварочник к счетчику электроэнергии, нарушая закон.

Подобное нарушение карается штрафом: потребление электроэнергии происходит незаконно и в больших количествах. Для того чтобы сделать работу более комфортной — не зависеть от U, не поднимать тяжести, не перегружать ЛЭП и не нарушать закон - нужно использовать сварочный аппарат инверторного типа.

Устройство и принцип действия

Сварочный инвертор устроен так, что подойдет и для домашнего применения, и для работы на предприятии. Он способен при небольших габаритах обеспечить стабильное горение сварочной дуги и даже использовать ток сварки, значительно превышающий показатель обыкновенного сварочного аппарата. Он использует ток высокой частоты для генерации сварочной дуги и представляет собой обыкновенный импульсный блок питания (такой же, как и компьютерный, только с большей силой тока), что и делает схему сварочного аппарата несложной.

Основные принципы его работы следующие: выпрямление входного напряжения; преобразование выпрямленного U в высокочастотный переменный ток при помощи транзисторных ключей и дальнейшее выпрямление переменного U в постоянный ток высокой частоты (рисунок 1).

Рисунок 1 — Схематическое устройство сварочника инверторного типа.

При использовании ключевых транзисторов высокой мощности происходит преобразование постоянного тока, который выпрямляется при помощи диодного моста в высокочастотный ток (30..90 кГц), что позволяет снизить габариты трансформатора. Выпрямитель на диодах пропускает ток только в одном направлении. Происходит «отсечение» отрицательных гармоник синусоиды.

Но на выходе выпрямителя получается постоянное U с пульсирующей составляющей. Для преобразования его в допустимый постоянный ток с целью корректной работы ключевых транзисторов, работающих только от постоянного тока, используется конденсаторный фильтр. Конденсаторный фильтр представляет собой один или несколько конденсаторов большой емкости, которая позволяет заметно сгладить пульсации.

Диодный мост и фильтр составляют блок питания для инверторной схемы. Вход инверторной схемы выполнен на ключевых транзисторах, преобразовывающих постоянное U в переменное высокой частоты (40..90 кГц). Это преобразование нужно для питания импульсного трансформатора, на выходе которого получается высокочастотный ток низкого U. От выходов трансформатора запитывается высокочастотный выпрямитель, а на выходе генерируется высокочастотный постоянный ток.

Устройство не очень сложное, и любой сварочник-инвертор поддается ремонту. Кроме того, существует множество схем, по которым можно сделать самодельный инвертор для сварочных работ.

Самодельный сварочный аппарат

Собрать инвертор для сварки просто, так как существует множество схем. Возможно сделать сварку из блока питания компьютера, сбить для него ящик, но получится сварочник низкой мощности. Подробно о создании простого инвертора из компьютерного БП для сварки можно ознакомиться в интернете. Огромной популярностью пользуется инвертор для сварки на ШИМ — контроллере типа UC3845. Микросхема прошивается при помощи программатора, который можно приобрести только в специализированном магазине.

Для прошивки нужно знать основы языка «С ++», кроме того, возможно скачать или заказать уже готовый программный код. Перед сборкой нужно определиться с основными параметрами сварочника: максимально допустимый ток питания составляет не более 35 А. При токе сварки равной, 280 А, U питающей сети составляет 220 В. Если проанализировать параметры, можно сделать вывод о том, что эта модель по характеристикам превышает некоторые заводские модели. Для сборки инвертора следует руководствоваться блок-схемой на рисунке 1.

Схема БП является несложной, и собрать ее достаточно просто (схема 1). Перед сборкой нужно определиться с трансформатором и найти подходящий корпус для инвертора. Для изготовления БП- инвертора нужен трансформатор. .

Этот трансформатор собирается на основе ферритового сердечника Ш7х7 или Ш8х8 с первичной обмоткой провода диаметром (d) 0,25..0,35 мм, количество витков 100. Несколько вторичных обмоток трансформатора должны иметь следующие параметры:

  1. 15 витков с d = 1..1,5 мм.
  2. 15 витков с d = 0,2..0,35 мм.
  3. 20 витков с d = 0,35..0,5 мм.
  4. 20 витков с d = 0,35..0,5 мм.

Перед намоткой нужно ознакомиться с основными правилами намотки трансформаторов.

Схема 1 - Схема блока питания инвертора

Навесным монтажом детали желательно не соединять, а сделать для этих целей печатную плату. Существует много способов изготовления печатной платы, но следует остановиться на простом варианте - лазерно-утюжной технологии (ЛУТ). Основные этапы изготовления печатной платы:

После изготовления трансформатора и печатной платы нужно приступить к монтажу радиокомпонентов по схеме блока питания сварочного инвертора. Для сборки БП понадобятся радиодетали:

После сборки БП нельзя подключать и проверять, так как он рассчитан именно для инверторной схемы.

Изготовление инвертора

Перед началом изготовления высокочастотного трансформатора для инвертора нужно изготовить гетинаксовую плату, руководствуясь схемой 2. Трансформатор выполнен на магнитопроводе типа «Ш20х28 2000 НМ» с рабочей частотой 41 кГц. Для его намотки (I обмотки) необходимо использовать медную жесть толщиной 0,3..0,45 мм и шириной 35..45 мм (ширина зависит от каркаса). Нужно сделать:

  1. 12 витков (площадь поперечного сечения (S) около 10..12 кв. мм.).
  2. 4 витка для вторичной обмотки (S = 30 кв. мм.).

Высокочастотный трансформатор нельзя мотать обыкновенным проводом из-за возникновения скин-эффекта. Скин-эффект - способность высокочастотных токов вытесняться на поверхность проводника, тем самым нагревая его. Вторичные обмотки следует разделить пленкой из фторопласта. Кроме того, трансформатор должен нормально охлаждаться.

Дроссель выполнен на магнитопроводе типа «Ш20×28» из феррита 2000 НМ с S не менее 25 кв. мм.

Трансформатор тока выполняется на двух кольцах типа «К30×18×7» и мотается медным проводом. Обмотка l продевается через кольцевую часть, а II обмотка состоит из 85 витков (d = 0,5 мм).

Схема 2 - Схема инверторного сварочного аппарата своими руками (инвертор).

После успешного изготовления высокочастотного трансформатора нужно осуществить монтаж радиоэлементов на печатной плате. Перед пайкой обработать оловом медные дорожки, детали не перегревать. Перечень элементов инвертора:

  • ШИМ — контроллер: UC3845.
  • MOSFET-транзистор VT1: IRF120.
  • VD1: 1N4148.
  • VD2, VD3: 1N5819.
  • VD4: 1N4739A на 9 В.
  • VD5-VD7: 1N4007.
  • Два диодных моста VD8: KBPC3510.
  • C1: 22 н.
  • C2, C4, C8: 0,1 мкФ.
  • C3: 4,7 н и C5: 2,2 н, C15, С16, С17, C18: 6,8 н (только использовать К78−2 или СВВ- 81).
  • C6: 22 мк, С7: 200 мк, С9-С12: 3000 мк 400 В, C13, C21: 10 мк, C20, C22: 47мк на 25 В.
  • R1, R2: 33k, R4: 510, R5: 1,3 k, R7: 150, R8: 1 на 1 Вт, R9: 2 M, R10: 1,5 k, R11: 25 на 40 Вт, R12, R13, R50, R54: 1 к, R14, R15: 1,5 k, R17, R51: 10, R24, R25: 30 на 20Вт, R26: 2,2 к, R27, R28: 5 на 5Вт, R36, R46-R48, R52, R42-R44 - 5, R45, R53 - 1,5.
  • R3: 2,2 k и 10 к.
  • К1 на 12 В и 40А, К2 - РЭС-49 (1).
  • Q6-Q11: IRG4PC50W.
  • Шесть MOSFET-транзисторов IRF5305.
  • D2 и D3: 1N5819.
  • VD17 и VD18: VS-HFA30PA60CPBF; VD19-VD22: VS-HFA30PA60CPBF.
  • Двенадцать стабилитронов: 1N4744A.
  • Две оптопары: HCPL-3120.
  • Катушка индуктивности: 35 мк.

Перед проверкой схемы на работоспособность нужно еще раз визуально проверить все соединения.

Перед сборкой нужно внимательно ознакомиться со схемой инверторной сварки и приобрести все необходимое для изготовления: купить радиодетали в специализированных радиомагазинах, найти подходящие каркасы трансформаторов, медную жесть и провод, продумать дизайн корпуса. Планирование работы значительно упрощает процесс сборки и экономит время. При пайке радиокомпонентов следует применять паяльную станцию (индукционная с феном), для исключения возможного перегрева и выхода из строя радиоэлементов. Соблюдать нужно и правила техники безопасности при работе с электричеством.

Дальнейшая настройка

Все силовые элементы схемы должны иметь качественное охлаждение. Транзисторные ключи необходимо «сажать» на термопасту и радиатор. Желательно применять радиаторы от микропроцессоров мощного типа (Athlon). Наличие вентилятора для охлаждения в корпусе обязательно. Схему БП можно доработать, поставив конденсаторный блок перед трансформатором. Нужно использовать К78−2 или СВВ-81, так как другие варианты недопустимы.

После подготовительных работ нужно приступить к настройке сварочного инвертора. Для этого нужно:

Существуют и более совершенные модели сварочников инверторного типа, в силовую схему которых входят тиристоры. Широкое распространение также получил инвертор «Тимвала», который можно найти на форумах радиолюбителей. Он имеет более сложную схему. Подробнее с ним можно ознакомиться в интернете.

Таким образом, зная устройство и принцип работы сварочного аппарата инверторного типа, собрать его своими руками не представляется непосильной задачей. Самодельный вариант практически не уступает заводскому и даже превосходит его некоторые характеристики.

Инвертор сварочный своими руками собрали сотни мастеров. Как показывает практика, ничего сверхсложного в этом процессе нет. При наличии опыта и желания можно обзавестись необходимыми деталями и потратить некоторое время на работу.

Для изготовления прибора необходимо запастись всеми необходимыми деталями и комплектующими.

Сварочный аппарат трансформаторного типа был настолько громоздким и проблемным при эксплуатации, что пришедшие ему на смену инверторы на тиристорах быстро завоевали всеобщую популярность.

Дальнейшее развитие технологий изготовления полупроводниковых компонентов позволило создать мощные полевые транзисторы. С их появлением инверторы стали еще легче и компактнее. Улучшенные условия регулировки и стабилизации сварочного тока позволяют с легкостью работать даже новичкам.

Выбор конструкции инвертора

В качестве корпуса можно использовать старый компьютерный блок.

Компоновка самодельного сварочного инвертора неоригинальна и похожа на большинство остальных конструкций. Большинство деталей может быть заменено на аналоги. Определять размеры устройства и начинать изготовление корпуса нужно при наличии всех основных элементов.

Можно использовать готовые радиаторы (от старых компьютерных блоков питания или других устройств). При наличии алюминиевой шины толщиной 2-4 мм и шириной более 30 мм их можно изготовить самостоятельно. Можно использовать любой вентилятор от старых устройств.

Все габаритные детали необходимо расположить на плоской поверхности, просмотреть возможности соединения по принципиальной схеме.

Затем определить место установки вентилятора, чтобы горячий воздух от одних деталей не нагревал другие. При затруднительной ситуации можно использовать два вентилятора, работающих на вытяжку. Стоимость кулеров небольшая, вес также незначительный, надежность всего устройства значительно повысится.

Самые габаритные и тяжелые детали – трансформатор и дроссель для сглаживания пульсаций. Их желательно расположить в центре или симметрично по краям, чтобы их вес не перетягивал устройство в одну сторону. Работать с устройством, надетым на плечо и постоянно сползающим в одну сторону во время сварки, крайне неудобно.

При удовлетворительном расположении всех деталей нужно определить размеры днища устройства и вырезать его из имеющегося в наличии материала. Материал должен быть неэлектропроводящим, обычно используются гетинакс, стеклотекстолит. При отсутствии данных материалов можно использовать дерево, обработанное средствами от возгорания и для защиты от влаги. Последний вариант в каком-то плане имеет свои преимущества. Для крепления деталей можно использовать шурупы, а не резьбовые соединения. Это несколько упростит и удешевит процесс изготовления.

Электрическая схема инвертора

Все инверторы имеют сходную блок-схему:

  • входной диодный мост, преобразующий переменное напряжение сети в постоянное;
  • преобразователь постоянного напряжения в переменное высокой частоты;
  • устройство понижения напряжения высокой частоты до рабочего;
  • преобразователь в постоянное напряжение с фильтром для сглаживания пульсаций.

Выбранная для самодельного изготовления схема устроена по классическому способу. Основой схемы является косой мост, который обеспечивает наилучшие характеристики работы при максимальной простоте и такой стоимости. Управление силовой схемой выполняется контроллером TL494. Контрольные функции и регулировку тока сварки осуществляет микроконтроллер PIC16F628. Защита устройства от перегрева также реализована через него. В зависимости от максимального тока и используемых деталей возможно несколько версий прошивки устройства с различным максимально допустимым сварочным током.

Блок питания логических элементов схемы и низковольтного оборудования выполнен на ШИМ-контроллере TNY264.

Принципиальная схема, несмотря на большое количество элементов, изготавливается довольно просто. Вся система управления выполнена на нескольких платах:

  • плата силовых элементов, два варианта;
  • выпрямитель;
  • две платы управления.

На плате силовых элементов установлены выпрямительные диоды с защитными цепями, силовые транзисторы, трансформатор, измерительное сопротивление. Необходимую версию платы нужно выбрать по имеющимся в наличии компонентам для сварочного инвертора.

Для инверторного аппарата необходима плата силового управления.

На плате выпрямителей установлены элементы мостов, сглаживающие конденсаторы, реле плавного пуска, сопротивления, компенсирующие изменения параметров от температуры (термисторы).

На платах силового управления расположены схемы:

  • ШИМ-контроллер с элементами развязки на оптронах;
  • цифровой индикатор с кнопками управления;
  • элементы блока питания;
  • микроконтроллер.

Перед сборкой плат дорожки для установки силовых элементов необходимо усилить медной проволокой сечением 2,5-4 мм. Для лужения дорожек желательно использовать тугоплавкий припой.

Трансформатор и дроссель для инвертора

При изготовлении сердечника для трансформатора сварочного инвертора можно использовать строчные трансформаторы от старых телевизоров. Понадобятся шесть трансформаторов типа ТВС110ПЦ15.У. С трансформаторов нужно снять стягивающую скобу (открутить две гайки М3 и извлечь скобу). Обмотку можно распилить с двух сторон ножовкой по металлу или болгаркой, соблюдая необходимые меры предосторожности. Если после удаления обмотки сердечник не разделяется на две части, нужно зажать его в тиски и легким ударом разделить. Поверхности деталей нужно очистить от эпоксидной смолы. После заготовки магнитопроводов нужно изготовить каркас. Оптимальным материалом для каркаса будет стеклотекстолит толщиной 1-2 мм, но можно использовать гетинакс или картон. Технические характеристики собранного магнитопровода:

Трансформаторы можно позаимствовать у старого телевизора.

  • средняя длина магнитной линии kp=182 мм;
  • размеры окна S 0 =6,2 см 2 ;
  • сечение магнитопровода S м =11,7 см 2 ;
  • коэрцитивная сила H c =12 А/м;
  • остаточная магнитная индукция B г =0,1 Тл;
  • магнитная индукция B s =0,45 Тл (если H=800 А/м), B m =0,33 Тл (если H=100 А/м и t=60° С).

Сечение и количество витков обмоток необходимо рассчитать, исходя из максимально допустимого рабочего тока для устройства.

Обмотки необходимо располагать по всей ширине окна для снижения непроизводительных потерь.

В качестве материала для обмоток можно использовать медную фольгу или литцендрат нужного сечения для устранения скин-эффекта. Изолирующим материалом между слоями и обмотками могут быть вощеная бумага, лакоткань, ФУМ лента.

При необходимости контроля сварочного тока можно изготовить токовый трансформатор. Для его изготовления понадобятся два кольца типа К30х18х7. На них нужно намотать 85 витков медного провода в лаковой изоляции сечением 0,2-0,5 мм. Кольцо надевается на любой из выходных проводов устройства.

Использование инвертора в трехфазной сети

Иногда при перегрузке сети не хватает мощности для нормальной работы инвертора. При возможности подключения однофазный инвертор можно переделать на трехфазный.

При подключении к однофазной сети (вилка включается в розетку) включается пускатель К1. Одна пара его контактов соединяет провода, идущие от вилки к штатному выключателю (вкл./выкл.) инвертора. Другая пара соединит разрезанные на плате дорожки от выключателя к стационарному выпрямителю.

Пускатель К1 должен иметь контакты с максимально допустимым током не менее 25 А.

Для подключения напряжения от трехфазного выпрямителя используется пускатель К2. Максимально допустимый ток его контактов должен быть не менее 10А. Для подключения к трехфазной сети желательно использовать розетку 3p + N + E (три фазных провода, нулевой и заземляющий). Устройство можно встроить в инвертор или изготовить в виде отдельного блока. Изготовление в виде отдельного блока оптимально при работе на одном месте. При частых перемещениях носить два устройства не удобно.

Заключение по теме

Сделать сварочный инвертор своими руками не так сложно. При недостатке опыта всегда можно проконсультироваться у специалистов.

В результате можно получить отличное устройство с дополнительными функциями, отсутствующими у инверторов промышленного изготовления.

Ремонт устройства, изготовленного своими руками, не создаст особых проблем, а использование в работе инструмента будет приносить удовольствие.

© 2024 Строим с умом